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A microscopic method for the generation of invasion percolation structures 
using "armies" of interacting random walkers is presented. Two distinct species 
are used to simulate the invading and defending fluids of a fluid invasion 
process. Trapping of the defending species is accomplished purely by local 
rules, without the need to repetitively check the connection between the "to be 
displaced" defender phase and the sink. 
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1. I N T R O D U C T I O N  

Problems concerning flow through porous media permeate many dis- 
ciplines, from living systems (blood flow) to ancient rocks (oil recovery~l/). 
Percolation theory (2~ recognizes the network aspect of flow in porous 
media, but provides only a very limited characterization of the fluid.(3 6) In 
particular, percolation theory contains no dynamics; indeed, it applies only 
to infinitely slow processes. Koplik and Lasseter (7) attempted to treat the 
dynamics of the flow by solving the appropriate differential equations of a 
very small network, but were limited due to computability. Lenormand and 
Zarcone (8'9) retained the lattice formulation typical of the percolation 
method, but developed a "local" approach to the trapping of defender 
clusters, utilizing the Kirkpatrick relaxation method. (1~ Their approach 
was to define a pressure at every node, then update these pressures, and the 
invader front advance, each time step. By not allowing complete relaxation 
between time steps, they incorporated the dynamic behavior in a very 
elegant fashion. 
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Of interest in flow in porous media are two fundamental and related 
phenomena, fingering and trapping. Fingering is a result of perturbations 
at the interface which are enhanced as the invasion takes place. (11'12) The 
result is a "sweep" of the medium where fingers of invader fluid, separated 
by regions of defender fluid, propagate through the medium. Trapping 
occurs when portions of the defender phase become surrounded by the 
invading phase and the invading phase cuts off the last remaining connec- 
tion of the defender cluster to the sink. In the absence of any com- 
pressibility of the defender, this cluster represents a region of the network 
that is inaccessible to the invading phase. The complexity of these 
phenomena lies in the nonlocal nature of the problem. (3) 

In this paper we implement recent methods of simulating fluid flow (14)'2 
and chemical reaction kinetics (15~ involving the use of discrete entities, 
specifically systems of random walkers, in order to generate invasion struc- 
tures dynamically. A set of microscopic rules can be incorporated with 
these techniques to simulate a variety of nonlinear behavior while main- 
taining the simplicity of the rules. Most importantly, the rules are entirely 
local, even for the trapping, making the test of connectivity to a sink 
unnecessary. The result is a complex structure of invader fluid patterns 
which exhibits defender fluid trapping. We find, for unequal viscosities, that 
the patterns span those expected for viscous fingering to those for a very 
dense and efficient sweep. 

In our extension of the simulation method, a second species of walkers 
is introduced,~6~ one species to represent each of the two fluid phases, with 
an additional rule governing interfacial interactions which results in the 
trapping of defender fluid clusters as well as the fingering phenomenon. 
One interpretation of this additional rule is a constraint on the walk of the 
defender walkers that they may not walk where an invader walker has 
been. This simple asymmetry is all that is required to generate fingering 
and trap defender fluid clusters! 

2. THEORETICAL C O N S I D E R A T I O N S  

We presume that transients in pressure decay according to a diffusion 
equation so that in our case the two fluids are governed by a set of time- 
dependent diffusion equations coupled at the interfacial boundary. Since we 
wish to model diffusion on a grid, we write the diffusion equation in finite 

2 A related and rather elegant approach developed by King and Scher, 113) which is equivalent 
to a random walk under specific conditions, stochastically evolves saturation contour lines 
that also incorporates trapping via local rules. 
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difference form and obtain the following result for the transient of the 
invader pressure Pi: 

( P~(x, y, t + At)= 1 -  Ax 2,] P;(x, y, t) 

DiAt 
+ 4--~x 2 [P;(x+Ax,  y, t ) + P ; ( x - A x ,  y, t) 

+ Pi(x, y+Ay ,  t)+P;(x,  y - A y ,  t)] 

with a similar equation for the defender pressure Pa. If A x = A y  and 
D;= AxR/At, the first term on the rhs in this equation disappears and one 
obtains the equation governing the usual random walk, where the P; now 
represents "occupancy probabilities" of the site (x, y) at time t. The 
diffusivities are inversely proportional to the viscosities, so that we can vary 
the viscosity ratio by a change in the ratio of diffusivities. Although it is 
clear that the form of the equation for the diffusion of pressure can be 
emulated by a random walk, the coupling of the pressure "fields" at the 
interface is by no means trivial. 

For the moment let us imagine that, in the random walker formula- 
tion of the problem, the interface between the two phases has just evolved 
to a new location and, as a result, the pressures within the distinct phases 
are not the steady-state pressures. At this instant one would expect that the 
invader pressures near the interface are too low, and the defender pressures 
near the interface are too high. Hence, the subsequent bulk relaxation pro- 
cesses will involve additional invader walkers coming from the source and 
diffusing toward the interface, whereas defender walkers will tend to diffuse 
from the interface toward the sink. Alternatively, we can envision the 
relaxation process in the defender as being one in which "holes" diffuse 
from the sink toward the interface. If the holes are considered to be 
walkers, then we have a process that begins to have some of the features 
of diffusion-limited aggregation (DLA), (17'1s) where the growth of the inter- 
face depends on both the arrival of the hole at the interface and on the 
sticking probability of the hole once it reaches the interface. 

The challenge is to define the rules which apply to the walkers as they 
interact at the invader/defender boundary; this is similar to the sticking 
probability of DLA-- the  interaction of walkers with the interface when 
they reach the surface of the aggregate. (19) The availability of two types 
of walkers, one for the invader and one for the defender, provides a 
fundamental and elegant basis for defining a dynamic "surface evolution 
probability." Consider two neighboring sites spanning the interface. The 
evolution of the surface is clearly a two-site interaction: the states of 
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the sites on both  sides of the interface are crucial to the p ropaga t ion  of 
the front. Hence, we obta in  for the interface growth Ia  the form 
I c  = o : D i H a P i +  f l D a H i P a  where H is the hole density. It  is this equa t ion  

which provides us with the necessary connect ion  between the pressure 
fields Pd and  Pi at the interface. 3 Then,  depending on  the model  desired, 

and  fl can be given appropr ia te  values. For  example, if/3 = 0, the invas ion 
process can only move forward, even at the microscopic level. With  the 

flexibility of the coefficients e and fl, one can invoke a variety of 
microscopic models which go beyond those suggested by the hydrodynamic  
view of interracial growth. 4 

The foregoing arguments  provide a conceptual  relat ionship between 
the DLA process and  the t rea tment  of fluid flow invas ion via two armies 
of r a n d o m  walkers. It  may be worthwhile point ing out  that  our  t rea tment  

of the fluid displacement  process is formally analogous  to a diffusion- 
l imited chemical react ion process (25'26) occurr ing a long an interface where 

the reaction rate is simply the product  of the concentra t ions  mult ipl ied by 

the "react ion coefficient" D~. The s ta tement  in the usual  D LA  process is 
that the diffusion rate of the invader  species is large with respect to the 

diffusion rate of the defender. It is clear that  our  expression reduces to the 
usual  DLA b o u n d a r y  condi t ion  when the limit of high invader  diffusivity 

is taken. 

3 It is interesting to replace each hole density in 1 a by the equivalent population 
density expression, H= 1 - P, to obtain I G ~ eD~P~ +/3DaP a -  (eD i +/3Da) P~Pa. With an 
appropriate choice of the coefficients, c~ =/3 (the negative sign denotes the direction of inter- 
face motion), and setting D~= Da= D, one obtains the expression Ia = D(P~--Pd), so that 
evolution of the front would be in terms of the population difference to first order in 
pressures. This is consistent with the form one might expect from hydrodynamics and is a 
common choice for such simulations, (2~ although generalizations to higher powers have 
been considered. (22'23) However, if D~ ~ D,t, then one should expect the evolution of the front 
to be governed by Ia=e[(DiP~--DdPa)+(D~--Dd)Pfd] ,  where the nonlinear term 
explicitly couples defender and invader populations. (24) 

4 It has been observed that growth is also proportional to the "average" interface curvature. 
This feature is inherent within the discrete entity simulation. Once the system has evolved 
for some time, the defender density of walkers approaches unity (the bulk relaxation time 
is long compared to interracial growth times, and unity is the greatest achievable density). 
It is well known that the random walk solves Laplace's equation. Thus, consider a fixed 
interface with a radius of curvature R (fingering into the defender phase) held at a fixed 
defender pressure Pa along the interface. Ignoring contributions to the pressure field from 
distant surface locations (these are temporally retarded anyway), the solution to Laplace's 
equation of a site near the interface in the defender phase could be represented as an expansion 
in the curvature parameter • = 1/R. Namely, Pa(r) ,~ P0(r)[1 -~(r) K + O(x2)], where Po(r) 
is the solution to Laplace's equation for ~ ---, 0, and c~(r) is an r-dependent function. By virtue 
of the random walk process, this solution (to all orders in ~c) is obtained by our simulation. 
The hole density in the defender phase a unit distance away from the interface is then 
Ha'~VPo+ xVe(r), where the gradients are evaluated at the interface. Thus, the interracial 
growth has contributions from both the pressure gradient and surface curvature. 
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We can now see how the simulation recognizes the two different time 
scales of the physical problem. One time scale is associated with the sur- 
face, i.e., the development of the invaded network, which occurs over 
periods of one simulation step, and the other time scale is associated with 
the relaxation of the pressures at the nodes of this invaded network. This 
relaxation occurs over periods of order L 2 simulation steps, where L is the 
system size and is just the time for a random walker to span a distance L 
The simulation we present here explicitly separates the two time scales. The 
evolution of the surface is controlled by the pressures of the two phases at 
the interface, whereas the relaxation of the bulk pressures is controlled by 
the diffusivity of the walkers. Several limiting cases exist. If the diffusivities 
of the defender and invader walkers are large, such that the bulk pressures 
have time to relax between each pore/throat invasion, the process becomes 
one dominated by percolationlike behavior. In this case, as long as both 
diffusivities are large, the transients within the bulk regions of defender and 
invader are unimportant. On the other hand, in the event that the invasion 
time scales and relaxation time scales are equivalent, the dynamics within 
the bulk regions of defender and invader dominate due to the invasion 
occurring at a surface, and the bulk relaxation occurring within a volume. 
In this event, the viscosity ratio of the two fluids is important as well, con- 
trolling the invasion pattern: stable displacements (where only the defender 
phase relaxes quickly) to viscous fingering displacements (where only the 
invader phase relaxes quickly). 

3. M E T H O D O L O G Y  

We carry out a simultaneous walk of a collection of identical random 
walkers, which closely approximates the process of moving each walker 
one at a time. Some care must be exercised in this connection, since 
walkers walking simultaneously must interact in some manner (we drop 
terms of third order and higher in the walker density). The approximation 
made has been observed to have no effect on test problems, (27) and the 
reduction in computational effort relative to the sequential movement of 
many walkers is certainly advantageous. Further, in order to mimic a 
defender phase, we introduce a second type of walker to represent the 
defender phase. 

At any time during the displacement all sites are considered occupied 
by either invader fluid or defender fluid. Some of the sites are occupied by 
walkers as well as fluid. Initially, all of the lattice sites are occupied by the 
defender phase. Some of these sites are also occupied by defender walkers; 
this occupancy generates an initial average defender density for the lattice; 
in the cases reported below, of 0.5 walker per lattice site. The invader phase 
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is then introduced at the source. Each site on the source line belongs to the 
invader phase, and has an invader walker occupancy probability of 0.5. As 
the displacement progresses, the defender phase is displaced from interior 
sites, which become occupied by the invader phase. The sink line is kept at 
an invader walker density of zero and a defender walker density of 0.5. 

Walkers within the bulk medium are conserved. This condition was 
introduced to reduce complexity in the initial study, but it could be 
modified to explicitly incorporate the "work" done as invader walkers 
perform displacements as new sites are invaded. In the present study the 
rules imposed on the walkers are as follows: 

(a) Walkers are allowed to migrate to nearest-neighbor sites in the 
lattice not presently occupied by another walker. This "single-walker- 
occupancy" rule holds for both the invader walker and for the defender 
walkers, together and separately. 

(b) Walkers that step onto the sink or source line are removed, and 
these lines are then randomly repopulated at the desired density each time 
step. 

(c) Defender walkers may only step onto those sites that have n e v e r  

been visited by invader walkers. This asymmetry in the behavior of the 
defender and invader walkers means that once a site has been visited by an 
invader walker, it cannot be reclaimed by the defender species. It should 
also be emphasized that the diffusivities of the two walkers need not be the 
same. 

In addition to the walker rules, there is a single "rule" involving the 
fluid phases within the network, which is an accounting process to keep 
track of the invaded network. This rule for fluid displacement is that when 
an invader walker steps onto a defender phase site presently unoccupied by 
a defender walker [as allowed by rule (a)], the defender fluid is assumed 
to be displaced and the site is then considered to be an invader phase site. 

The asymmetry of rule (c) is manifested by the observed fingering pat- 
terns and in the trapping of defender walkers. Trapping results when 
invader walkers have visited all sites surrounding a group of defender 
Walkers: since the defender walkers are forbidden to walk across the path 
of invader walkers, they are forever isolated. The result inherent within this 
trapping mechanism is that the trapped defender region is compressed until 
the region has a 100% defender walker occupancy per trapped site. For 
example, if the lattice was initialized with a defender walker occupancy of 
50%, a region of trapped defender sites might only have one-half of these 
sites occupied by defender walkers. In the cases we have examined the com- 
pression is rarely this severe, since the density of defender walkers at the 
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invader fluid front is usually quite high, near 100%, even for an initial 
defender density of 50 %. 

It should be emphasized that these trapping rules are entirely local, 
removing the primary inefficiency of many previous approaches. Further, 
such simple rules also can be efficiently "bit coded." All that is needed is to 
associate with each site three bits. One of the bits is initially set to zero 
throughout the lattice (denoting defender phase sites) and is then set to one 
if an invader walker walks on the sites (denoting invader phase sites). Sites 
with this bit set to one are then inaccessible to the defender species. The 
other two bits for each site represent the presence of a defender walker or 
an invader walker. If either of these is set to unity, the presence of a 
random walker is known. These set bits are what randomly walk around 
on the network according to the rules discussed above. 

4. R E S U L T S  

(i) Evolution of  a Front: Figure 1 displays a time series of the 
resulting structures from the simulation. The initial defender ant density is 
0.5 defender walker per lattice site, and an invader ant density difference of 
0.5 walker per site is imposed across the network. The underlying network 
is a 128 x 128 square lattice, with a source edge and a sink edge with 

W 
W 

(a) In* asionfl rapping {b) Stable Displacement (e) ~]~ous Fingering 

Fig. 1. A series of snapshots showing the invader structure at times from 2000 to 20,000 
simulation steps for different viscosity ratios: (a) equal viscosity, (b) viscosity ratio of 0.1, 
(c) viscosity ratio of 10. The invasion is from the top down and invaded sites are indicated 
in black. 
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periodic boundary conditions applied on the two edges perpendicular to 
the invader walker source-to-sink gradient. Structures separated temporally 
by about 5000 simulation steps illustrate the evolution of the front. 
Figure la results from a case where the viscosity ratio of the fluids is equal. 
It is observed to be relatively uniform, although large-scale instabilities 
occur. Some fingers of these instabilities eventually touch, leaving behind 
clusters of trapped defender walkers spanning a large range of sizes. 
Trapped regions are found to be effectively incompressible, even though the 
initial defender density is only 0.5. 

(ii) Stability of the Front: An additional generalization that can be 
added to the technique is the ability to choose, with some degree of 
arbitrariness, the defender-to-invader viscosity ratio. This allows for the 
examination of phenomena ranging from stable displacements, with little 
trapped defender fluid, to viscous fingering, where much of the defender 
fluid is trapped. In the case of viscous fingering, the defender fluid is given 
a very low diffusivity (high viscosity), whereas the invader fluid is given a 
high diffusivity (low viscosity). For stable displacements, the situation is 
reversed. A time series for viscous fingering (with a defender-to-invader 
viscosity ratio of 10) is shown in Fig. lc and that for a stable displacement 
(with a defender-to-invader viscosity ratio of 0.1) is seen in Fig. lb. The 
stable displacement exhibits a broad, uniform front, with only small regions 
of trapped defender clusters left behind as the front passes. On the other 
hand, with viscous fingering, the front is very dendritic, leaving great 
regions of defender fluid behind. 

5. A N A L Y S I S  

Our method of performing an invasion process provides information 
regarding not only the final, steady-state structures, with their invaded and 
trapped regions, but also such transient information as the lead position of 
the invading fluid versus time and the invader and defender walker currents 
(which can provide the macroscopic conductivity of the invaded 
network(m)). We are, however, primarily interested in the resulting struc- 
tures, and for further analysis we shall restrict ourselves to a viscosity ratio 
of one. For this purpose, we have terminated the invasion process when all 
lattice sites (up to an arbitrary distance from the sink) have either been 
invaded by invader or are occupied by trapped defender. 

(i) Trapped Clusters." We have analyzed the trapped defender 
cluster distribution. If this were a percolation problem performed at the 
percolation threshold, this information would give results for two 
exponents, the size distribution exponent ~ and the fractal dimension Da as 
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-10 

d 5  
1 2 3 4 5 

In size 

Fig. 2. Frequency distribution of trapped defender cluster sizes plotted against cluster size on 
a log-log scale. A power-law behavior is observed over several orders of magnitude. 

defined by Stauffer. (2) Although this clearly is not a percolation problem in 
the usual sense of the term, we find, using the above analysis, some quite 
interesting similarities. The runs to be discussed below have been obtained 
on three different lattice widths, L =  128, L =  192, and L = 2 5 6  lattice 
spacings. The lengths used for these simulations were, respectively, 300, 
375, and 500 lattice spacings in an attempt to minimize the end effects. 
Once the simulations were completed, a uniformly invaded section of 
length L was taken to perform measurements. 

]In Fig. 2 we present the trapped defender cluster size distribution 
plotted on a log-log scale for the largest lattice. This curve is the result of 
analyzing structures from 118 simulation runs. Although the lattice is quite 
small, it appears that the trapped cluster distribution obeys a power law, 
n(s)~s-L In order to make a more accurate estimate for the exponent, 
the results of Fig. 2 are plotted as in Fig. 3 for the quantity M(s)= 

- 1  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . ' ~  

-2 

-3 

In M(s) 
4 

-5 

-6 
0 

�9 256 2.34 �9 
D 192 2.31 

�9 128 2.28 

5 6 7 8 I 2 3 I s 

Fig. 3. M(s) as defined in the text plotted against the cluster size on a log-log scale. The 
power-law exponents are tabulated for three different lattice sizes. 
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y~=~l s'n(s'), which scales as M ( s ) ~  s -(~-2~, giving a more accurate deter- 
mination of the exponent v. Results for the exponents are determined by a 
simple fit of the linear regions, and for three lattice sizes are r = 2.28, 2.31, 
and 2.34, for the smallest to largest lattices, respectively. The results 
indicate that over the range of cluster sizes shown for a given lattice, a 
power-law scaling is quite accurate. However, there is no apparent scaling 
of the exponent z with the lattice size to indicate the exponent for an 
infinite lattice. These values are in strong disagreement with the value 

= 2.05 at the two-dimensional percolation threshold. Continuing with the 
analogy to percolation, we recall that both above and below the percola- 
tion threshold there is an additional exponential decay factor multiplying 
the power law cluster distribution. (2) If our cluster distribution has this factor 
as well, the constant in that exponent must be quite small, since no effect 
is observed in the data up to cluster size s = 128. An additional complication 
in the percolation analogy is that the exponent r should decrease on either 
side of the percolation threshold(3): we find a larger value of z, which is, in 
fact, increasing with lattice size! If this problem were in the class of percola- 
tion problems, it would only be with increasing dimensionality that the 
exponent should increase, for example, to a value of 2.5 for dimensions 
d>~ 6. (2) 

One other quantity that is easily examined is the radius of gyration for 
the trapped defender clusters. According to Stauffer, (2) the radius of gyra- 
tion for finite percolation clusters should scale as r ~ s  p, where p is an 
exponent having the value 48/91 = 0.527 at the percolation threshold, 1/2 
above the threshold, and roughly 2/3 below the threshold in two dimensions. 
The distribution we have measured is shown in Fig. 4 for the largest lattice 
size. Within the linear region, the exponent is roughly p --~ 0.599. The smaller 
lattices, L - -  128 and L = 192, give exponents of 0.58 and 0.592, respectively. 

5 . , . , , . , . , . , 

3 

I n  r 
2 

1 

0 
2 

j 
3 4 5 6 7 8 9 

I n  s i z e  

F i g .  4.  A v e r a g e  r a d i u s  o f  g y r a t i o n  f o r  c l u s t e r s  o f  a g i v e n  s i z e  a r e  p l o t t e d  o n  a l o g - l o g  s c a l e .  

T h i s  a l s o  f o l l o w s  a p o w e r - l a w  w i t h  a n  e x p o n e n t  p = 0 . 5 9 9  f o r  a n  L = 2 5 6  l a t t i c e .  
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Fig. 5. 

D(i) 

2.1 . . . . . . . . .  , . . . . . . . . .  i . . . . . . . . .  J . . . . . . . . .  J . . . . . . . . .  , . . . . . . . . .  

"Asymptotic" 
2.O / limit 

19 ~_~ ,__ . .  
/ 

1.8 
] / Pixel 

1.7 I~ limit 

1.6 ..................................................... 1 2 3 4 5 
In (i) 

Fractal  dimension D ( i )  of the invader network vs. window size i. 

These values seem to show a weak tendency toward the value of 2/3; 
however, the accuracy is much too low to make any strong conclusions. 

(ii) Fractal Dimension of the Invaded Structure." Finally, we can 
make a direct measurement of the fractal dimension of the network swept 
by the invading fluid. The problem presented here can be placed on a con- 
tinuum of viscosity ratios, with one end representing viscous fingering inva- 
sions, and the other end representing stable displacements. The invaded 
network of a stable displacement clearly has a dimensionality of 2, whereas 
the network of a viscous fingering invasion has a fractal dimension of 
1.4-1.7. (28) How does the fractal dimension change with the viscosity ratio? 
This simulation checks the equal-viscosity limit. We have applied a 
covering method of analyzing fractal dimensions D using local slopes, ~29/ 
and the results are shown in Fig. 5. There is considerable structure to this 
curve; for large covering squares the trend of D(i) toward two simply 
reflects the boundary effect and as the window size approaches the pixel 
limit, (3~ the dimensionality drops sharply. Between these two extremes the 
covering squares tend to suggest a fractal dimensionality D(i) approaching 
a limit D of about 1.84. 

6. C O N C L U D I N G  R E M A R K S  

We have presented a generalization of discrete entity simulation 
methods based on a microscopic, physical behavior which qualitatively 
agrees with the experimentally observed complex macroscopic behavior. 
Phenomena such as defender fluid trapping and arbitrary viscosity ratios 
have been incorporated. We have analyzed these trapped defender clusters 
in analogy to percolation concepts. The cluster size distribution 
demonstrates good agreement with a simple power law. In the case of equal 

8 2 2 / 6 6 / 3 - 4 - 3 2  
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viscosities on a two-dimensional network, we present several predictions 
for trapped cluster distribution exponents, including the exponent for the 
radius of gyration, and fractal dimensions. 
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